首页> 外文OA文献 >Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry
【2h】

Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry

机译:从元古代海洋化学看真核厌氧菌之间的能量代谢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fuelling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.
机译:近年来,有关早期真核生物进化的观点发生了重大变化。一个非常重要的发现是线粒体,包括氢核小体和新发现的线粒体,与核本身一样普遍存在,并且在真核生物中的定义也一样。第二个重要的进展是关于真核生物群与目前引起人们广泛关注的大约六个新的真核生物超群之间的系统发生关系的调整(仍在进行中)。从能量代谢的观点(真核生物通过其生化手段获得其ATP,从而实现其他任何性状的进化),对真核厌氧菌中线粒体的了解得到了改善。内共生理论的主流说法并未预测厌氧真核生物中线粒体的普遍性,而专门针对真核厌氧生物中能量代谢进化起源的另一种假设则可以。生物学上的这些发展与地球科学中类似的动荡并存,关于元古代(大约从2.5 Ga到0.6Ga前)海洋中氧气的流行的观点。新的元古代海洋化学模型表明,在大多数元古代,海洋是缺氧的和硫化的。它的支持者认为,潜在的地球化学机制是通过大气中的氧气将硫酸盐硫酸化来使大陆硫化物风化,硫酸盐以硫酸盐的形式被带入海洋,为全球范围内的海洋硫酸盐还原剂(厌氧的,产生硫化氢的原核生物)提供燃料。综上所述,生物学和地质学上这两个相互兼容的发展突显了线粒体中氧依赖性ATP生成途径的进化重要性,包括各种后生动物,是真核生物在其中生长并多样化成其主要谱系的环境的水印。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号